Stochastic Systematic Search Algorithms for Satisfiability
نویسندگان
چکیده
منابع مشابه
Hiding solutions in random satisfiability problems: A statistical mechanics approach
A major problem in evaluating stochastic local search algorithms for NP-complete problems is the need for a systematic generation of hard test instances having previously known properties of the optimal solutions. On the basis of statistical mechanics results, we propose random generators of hard and satisfiable instances for the 3-satisfiability problem. The design of the hardest problem insta...
متن کاملUnrestricted Backtracking Algorithms for Satisfiability
This paper proposes a general framework for implementing backtracking search strategies in Propositional Satisfiability (SAT) algorithms, that is referred to unrestricted backtracking. Different organizations of unrestricted backtracking yield well-known backtracking search strategies. Moreover, this general framework allows devising new backtracking strategies. Hence, we illustrate and compare...
متن کاملSystematic vs. Local Search for SAT
Due to its prominence in artificial intelligence and theoretical computer science, the propositional satisfiability problem (SAT) has received considerable attention in the past. Traditionally, this problem was attacked with systematic search algorithms, but more recently, local search methods were shown to be very effective for solving large and hard SAT instances. Especially in the light of r...
متن کاملTowards Provably Complete Stochastic Search Algorithms for Satisfiability
This paper proposes a stochastic, and complete, backtrack search algorithm for Propositional Satisfiability (SAT). In recent years, randomization has become pervasive in SAT algorithms. Incomplete algorithms for SAT, for example the ones based on local search, often resort to randomization. Complete algorithms also resort to randomization. These include, state-of-the-art backtrack search SAT al...
متن کاملOn the Run-time Behaviour of Stochastic Local Search Algorithms for SAT
Stochastic local search (SLS) algorithms for the propositional satisfiability problem (SAT) have been successfully applied to solve suitably encoded search problems from various domains. One drawback of these algorithms is that they are usually incomplete. We refine the notion of incompleteness for stochastic decision algorithms by introducing the notion of “probabilistic asymptotic completenes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 9 شماره
صفحات -
تاریخ انتشار 2001